Aan de slagGa gratis aan de slag

Shadow price and slack exercise pt2

In this exercise you are working on the production plan for a company over the next 4 months. Your goal is to determine how much should be produced to minimize the production (fixed + variable), and storage costs while meeting the customers demand. The are constraints on the production capacity and demand each month.

Deze oefening maakt deel uit van de cursus

Supply Chain Analytics in Python

Cursus bekijken

Oefeninstructies

Complete the code, near the bottom of the sample code, to create a Pandas DataFrame that shows the slack of the constraints.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

model = LpProblem("Production Planning", LpMinimize)
time = [1, 2, 3, 4]
s = LpVariable.dicts("stock_in", [0, 1, 2, 3, 4], lowBound=0, cat="Integer")
x = LpVariable.dicts("prod_in", time, lowBound=0, cat="Integer")
y = LpVariable.dicts("plant_on_", time, lowBound=0, cat="Binary")
model += lpSum([d.loc[t,"unit_prod"]*x[t] + d.loc[t,"unit_inv"]*s[t] 
                + d.loc[t,"fixed_setup"]*y[t] for t in time])
s[0] = 100
for t in time:
    model += s[t-1] + x[t] == d.loc[t,"demand"] + s[t]
    model += x[t] <= d.loc[t,"prod_cap"]*y[t]
model.solve()

# Print the Constraint Slack
o = [{'name':name, 'slack':____} 
     for ____, c in ____]
print(____)
Code bewerken en uitvoeren