Aan de slagGa gratis aan de slag

Computing state-values for a policy

Using the same deterministic environment MyGridWorld, now you need to evaluate the effectiveness of the policy you defined in the previous exercise. You'll do this by computing the state value function for each state under this policy.

The environment has been imported as env along with the necessary variables needed (terminal_state, num_states, policy, gamma).

Deze oefening maakt deel uit van de cursus

Reinforcement Learning with Gymnasium in Python

Cursus bekijken

Oefeninstructies

  • Complete the function compute_state_value() to compute the value for each state under the given policy.
  • Create a state_values dictionary where each key is the state, and each value is the state value.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Complete the function
def compute_state_value(state):
    if state == terminal_state:
        return ____
    action = ____
    _, next_state, reward, _ = env.unwrapped.P[state][action][0]
    return ____

# Compute all state values 
state_values = {____: ____ for ____ in range(____)}

print(state_values)
Code bewerken en uitvoeren