Computing state-values for a policy
Using the same deterministic environment MyGridWorld, now you need to evaluate the effectiveness of the policy you defined in the previous exercise. You'll do this by computing the state value function for each state under this policy.
The environment has been imported as env along with the necessary variables needed (terminal_state, num_states, policy, gamma).
Deze oefening maakt deel uit van de cursus
Reinforcement Learning with Gymnasium in Python
Oefeninstructies
- Complete the function
compute_state_value()to compute the value for each state under the given policy. - Create a
state_valuesdictionary where each key is thestate, and each value is the state value.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Complete the function
def compute_state_value(state):
if state == terminal_state:
return ____
action = ____
_, next_state, reward, _ = env.unwrapped.P[state][action][0]
return ____
# Compute all state values
state_values = {____: ____ for ____ in range(____)}
print(state_values)