Aan de slagGa gratis aan de slag

Initializing the reward

You are in the final stages of deploying a generative model designed to offer personalized recommendations for an online bookstore. To align this model with human-preferred recommendations, you need to train a reward model using some collected preference data. The first step is to initialize the model and configuration parameters.

The AutoTokenizer and AutoModelForSequenceClassification were preloaded from transformers. RewardConfig was preloaded from trl.

Deze oefening maakt deel uit van de cursus

Reinforcement Learning from Human Feedback (RLHF)

Cursus bekijken

Oefeninstructies

  • Load the GPT-1 model, "openai-gpt", for the sequence classification task using Hugging Face's AutoModelForSequenceClassification.
  • Initialize the reward configuration using "output_dir" as the output directory, and set the token maximum length to 60.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Load the pre-trained GPT-1 model for text classification
model = ____

tokenizer = AutoTokenizer.from_pretrained("openai-gpt")

# Initialize the reward configuration and set max_length
config = ____(output_dir=____, max_length=____)
Code bewerken en uitvoeren