Aan de slagGa gratis aan de slag

Mitigating negative KL divergence

You were fine-tuning the model using RLHF techniques and noticed that the model's performance has worsened compared to the base model. You suspect this is due to negative KL divergence, so you want to set the correct generation parameters to prevent this issue.

The tokenizer has been pre-imported.

Deze oefening maakt deel uit van de cursus

Reinforcement Learning from Human Feedback (RLHF)

Cursus bekijken

Oefeninstructies

  • Set top_k and min_length to values that help avoid KL divergence.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

generation_kwargs = {
    # Set min length and top k parameters
    ____, 
  	"top_p": 1.0,
  	"do_sample": True,  
  	"pad_token_id": tokenizer.eos_token_id, 
  	"max_new_tokens": 32}
Code bewerken en uitvoeren