Mitigating negative KL divergence
You were fine-tuning the model using RLHF techniques and noticed that the model's performance has worsened compared to the base model. You suspect this is due to negative KL divergence, so you want to set the correct generation parameters to prevent this issue.
The tokenizer has been pre-imported.
Deze oefening maakt deel uit van de cursus
Reinforcement Learning from Human Feedback (RLHF)
Oefeninstructies
- Set
top_kandmin_lengthto values that help avoid KL divergence.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
generation_kwargs = {
# Set min length and top k parameters
____,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"max_new_tokens": 32}