Aan de slagGa gratis aan de slag

K-means for feedback clustering

You have a dataset of feedback responses, and you've used a GPT model to calculate confidence scores for each response. To identify unusual or outlier feedback, you apply k-means clustering to the low-confidence responses.

The KMeans algorithm, reviews and confidences variables, and np library have been preloaded.

Deze oefening maakt deel uit van de cursus

Reinforcement Learning from Human Feedback (RLHF)

Cursus bekijken

Oefeninstructies

  • Initialize the k-means algorithm. Set the random_state to 42 for code reproducibility.
  • Calculate distances from cluster centers to identify outliers as the difference between data and the corresponding cluster centers.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

def detect_anomalies(data, n_clusters=3):
    # Initialize k-means
    ____
    clusters = kmeans.fit_predict(data)
    centers = kmeans.cluster_centers_

    # Calculate distances from cluster centers
    ____
    return distances
  
anomalies = detect_anomalies(confidences)
print(anomalies)
Code bewerken en uitvoeren