Approximate Pi with recursion
The number \(\pi\) can be computed by the following formula: $$ \pi = 4\sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}=4\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-…\right) $$ Your task is to write a recursive function to approximate \(\pi\) using the formula defined above (the approximation means that instead of infinity \(\infty\), the sequence considers only a certain amount of elements \(n\)).
Here are examples of \(\pi\) for some of the values of \(n\):
\(n=0 \rightarrow \pi = 4\)
\(n=1 \rightarrow \pi \approx 2.67\)
\(n=2 \rightarrow \pi \approx 3.47\)
Deze oefening maakt deel uit van de cursus
Practicing Coding Interview Questions in Python
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Write an expression to get the k-th element of the series
get_elmnt = lambda k: ____/____