Using smoothing parameters to avoid overfitting
The smoothing parameter balances between likelihood and wiggliness to optimize model fit. Here, you'll examine smoothing parameters and will fit models with different fixed smoothing parameters.
Deze oefening maakt deel uit van de cursus
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Oefeninstructies
- View the value of the smoothing parameter (\(\lambda\)) of the provided
gam_modmodel by extracting thespvalue from the model. - Fit two models to the
mcycledata withaccelas a smooth function oftimesand a smoothing parameter of:- 0.1
- 0.0001
- Visualize both models.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
library(mgcv)
# Extract the smoothing parameter
gam_mod <- gam(accel ~ s(times), data = mcycle, method = "REML")
___
# Fix the smoothing parameter at 0.1
gam_mod_s1 <- gam(accel ~ s(times), data = mcycle, sp = ___)
# Fix the smoothing parameter at 0.0001
gam_mod_s2 <- gam(___)
# Plot both models
par(mfrow = c(2, 1))
plot(gam_mod_s1, residuals = TRUE, pch = 1)
plot(gam_mod_s2, residuals = TRUE, pch = 1)