Multivariate GAMs of auto performance
GAMs can accept multiple variables of different types. In the following exercises, you'll work with the mpg dataset available in the gamair package to practice fitting models of different forms.
Deze oefening maakt deel uit van de cursus
Nonlinear Modeling with Generalized Additive Models (GAMs) in R
Oefeninstructies
- Use the
head()andstr()functions to examine thempgdata set. - Fit a GAM to these data to predict
city.mpgas the sum of smooth functions ofweight,length, andprice. - Use the
plot()function provided to visualize the model.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
library(mgcv)
# Examine the data
___
___
# Fit the model
mod_city <- gam(city.mpg ~ ___,
data = mpg, method = "REML")
# Plot the model
plot(mod_city, pages = 1)