Aan de slagGa gratis aan de slag

Multivariate GAMs of auto performance

GAMs can accept multiple variables of different types. In the following exercises, you'll work with the mpg dataset available in the gamair package to practice fitting models of different forms.

Deze oefening maakt deel uit van de cursus

Nonlinear Modeling with Generalized Additive Models (GAMs) in R

Cursus bekijken

Oefeninstructies

  • Use the head() and str() functions to examine the mpg data set.
  • Fit a GAM to these data to predict city.mpg as the sum of smooth functions of weight, length, and price.
  • Use the plot() function provided to visualize the model.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

library(mgcv)

# Examine the data
___
___

# Fit the model
mod_city <- gam(city.mpg ~ ___, 
                data = mpg, method = "REML")

# Plot the model
plot(mod_city, pages = 1)
Code bewerken en uitvoeren