Aan de slagGa gratis aan de slag

Agentic orchestration with LangGraph

Deze oefening maakt deel uit van de cursus

Multi-Agent Systems with LangGraph

Cursus bekijken

Oefeninstructies

Make sure to first run the cell to install the libraries

  • Construct a State class to create a message history where new messages are appended to it, and use it to create a graph state.
  • Define a gpt-4o-mini LLM using the ChatOpenAI class, and a function called llm_node() to invoke it on state messages and store the result.
  • Construct and compile a graph that routes the input into an LLM node, which calls llm_node, and returns the result.
  • Run the code provided to visualize the graph and talk to your agent!


Note: If you’re running DataLab in Restricted Mode, this exercise isn’t supported yet. We’re actively working on making it available in the future.


Praktische interactieve oefening

Zet theorie om in actie met een van onze interactieve oefeningen.

Begin met trainen