Aan de slagGa gratis aan de slag

Comparing the RMSE of two models

As you did using the sum of squared residuals and \(R^2\), let's once again assess and compare the quality of your two models using the root mean squared error (RMSE). Note that RMSE is more typically used in prediction settings than explanatory settings.

model_price_2 and model_price_4 are available in your workspace.

Deze oefening maakt deel uit van de cursus

Modeling with Data in the Tidyverse

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# MSE and RMSE for model_price_2
get_regression_points(model_price_2) %>%
  mutate(sq_residuals = residual^2) %>%
  summarize(mse = mean(sq_residuals), rmse = sqrt(mean(sq_residuals)))

# MSE and RMSE for model_price_4
___
Code bewerken en uitvoeren