Aan de slagGa gratis aan de slag

Linear interpolation

For continuous and numeric data – where the values can fall anywhere within a range of values – linear interpolation is often the best option for imputation. Data such as temperature, elevation, and per capita income are examples where linear interpolation could be used.

In this exercise, you will determine the number of missing values in the maunaloa_missing time series and use linear interpolation to impute these values.

maunaloa_missing, zoo, and ggplot2 are available to you.

Deze oefening maakt deel uit van de cursus

Manipulating Time Series Data in R

Cursus bekijken

Oefeninstructies

  • Determine the count of observations from maunaloa_missing that are NA.

  • Use linear interpolation to fill in the missing values in maunaloa_missing; assign this as maunaloa_linear.

  • Generate a ggplot of maunaloa_linear, with a red-colored line.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Count the number of missing values
___

# Fill in values with linear approximation
___

# Generate a full ggplot of maunaloa_linear
ggplot(___,
       aes(___)) + 
  scale_y_continuous() + 
  ___
Code bewerken en uitvoeren