Creating a multi-step workflow: Model Evaluation
In this exercise, you will create the Model Evaluation step of our multi-step workflow used to manage part of the ML lifecycle. You will use the run() method from the MLflow Projects module and set the entry point to model_evaluation. You will then take the model_engineering_run_id as a parameter that was generated as an output in the previous exercise and pass it to the command.
The MLproject created in the previous step is available in the IPython Shell using print(MLproject).
The mlflow module is imported.
Deze oefening maakt deel uit van de cursus
Introduction to MLflow
Oefeninstructies
- Assign the
run()method from MLflow Projects module tomodel_evaluation. - Set the entry point argument to
"model_evaluation". - Set a parameter called
"run_id"with a value ofmodel_engineering_run_id.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Set the MLflow Projects run method
model_evaluation = ____.____.____(
uri="./",
# Set the entry point to model_evaluation
____="____",
# Set the parameter run_id to the run_id output of previous step
parameters={
"____": ____,
},
env_manager="local"
)
print(model_evaluation.get_status())