Package a machine learning model
In this exercise, you will train a LinearRegression model from scikit-learn to predict profit of a Unicorn Company.
You will use MLflow's built-in scikit-learn Flavor to package the model. You will use the Flavor's auto logging function to automatically log metrics, parameters and the model to MLflow Tracking when the fit estimator is called.
Deze oefening maakt deel uit van de cursus
Introduction to MLflow
Oefeninstructies
- Import the
sklearnFlavor from themlflowmodule. - Set the Experiment to
"Sklearn Model". - Use auto logging from the flavor to package your model.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Import Scikit-learn flavor
import mlflow.____
# Set the experiment to "Sklearn Model"
mlflow.____("____")
# Set Auto logging for Scikit-learn flavor
____.____.____()
lr = LinearRegression()
lr.fit(X_train, y_train)
# Get a prediction from test data
print(lr.predict(X_test.iloc[[5]]))