Aan de slagGa gratis aan de slag

Generating text

LLMs have many capabilities with text generation being one of the most popular.

You need to generate a response to a customer review found in text; it contains the same customer review for the Riverview Hotel you've seen before.

The pipeline module has been loaded for you.

Deze oefening maakt deel uit van de cursus

Introduction to LLMs in Python

Cursus bekijken

Oefeninstructies

  • Instantiate the generator pipeline specifying an appropriate task for generating text.
  • Complete the prompt by including the text and response in the f-string.
  • Complete the model pipeline by specifying a maximum length of 150 tokens and setting the pad_token_id to the end-of-sequence token.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Instantiate the pipeline
generator = pipeline(____, model="gpt2")

response = "Dear valued customer, I am glad to hear you had a good stay with us."

# Complete the prompt
prompt = f"Customer review:\n{____}\n\nHotel reponse to the customer:\n{____}"

# Complete the model pipeline
outputs = generator(prompt, ____, pad_token_id=____, truncation=True)

print(outputs[0]["generated_text"])
Code bewerken en uitvoeren