Generating text
LLMs have many capabilities with text generation being one of the most popular.
You need to generate a response to a customer review found in text; it contains the same customer review for the Riverview Hotel you've seen before.
The pipeline module has been loaded for you.
Deze oefening maakt deel uit van de cursus
Introduction to LLMs in Python
Oefeninstructies
- Instantiate the
generatorpipeline specifying an appropriate task for generating text. - Complete the
promptby including thetextandresponsein the f-string. - Complete the model pipeline by specifying a maximum length of 150 tokens and setting the
pad_token_idto the end-of-sequence token.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Instantiate the pipeline
generator = pipeline(____, model="gpt2")
response = "Dear valued customer, I am glad to hear you had a good stay with us."
# Complete the prompt
prompt = f"Customer review:\n{____}\n\nHotel reponse to the customer:\n{____}"
# Complete the model pipeline
outputs = generator(prompt, ____, pad_token_id=____, truncation=True)
print(outputs[0]["generated_text"])