Aan de slagGa gratis aan de slag

Evaluating perplexity

Try your had at generating text and evaluating the perplexity score.

You've been provided some input_text that is the start of a sentence: "Current trends show that by 2030 ".

Use an LLM to generate the rest of the sentence.

An AutoModelForCausalLM model and its tokenizer have been loaded for you as model and tokenizer variables.

Deze oefening maakt deel uit van de cursus

Introduction to LLMs in Python

Cursus bekijken

Oefeninstructies

  • Encode the input_text and pass it to the provided text generation model.
  • Load and compute the mean_perplexity score on the generated text.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Encode the input text, generate and decode it
input_text_ids = ____(input_text, return_tensors="pt")
output = ____(input_text_ids, max_length=20)
generated_text = ____(output[0], skip_special_tokens=True)

print("Generated Text: ", generated_text)

# Load and compute the perplexity score
perplexity = ____("perplexity", module_type="metric")
results = ____(model_id="gpt2", predictions=____)
print("Perplexity: ", results['mean_perplexity'])
Code bewerken en uitvoeren