Aan de slagGa gratis aan de slag

The effect of seasonality

Assume you want to predict whether a candidate donor will donate next month. As predictive variable, you want to include the maximum gift of each donor in the previous month. As you learned in the video, the mean amount of the gifts in July and September are similar, but the gifts are fairly higher in December. In this exercise, you will see how this can influence the performance of your model.

The logistic regression model is created and fitted for you in logreg on the data in July.

Deze oefening maakt deel uit van de cursus

Intermediate Predictive Analytics in Python

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# AUC of model in July:
predictions = logreg.____(test_july[["age", "max_amount"]])[:,1]
auc = ____(test_july["target"], predictions)
print(auc)
Code bewerken en uitvoeren