Aan de slagGa gratis aan de slag

Bar plots: Using aggregated data

If it is appropriate to use bar plots (see the video!), then it nice to give an impression of the number of values in each group.

stat_summary() doesn't keep track of the count. stat_sum() does (that's the whole point), but it's difficult to access. It's more straightforward to calculate exactly what we want to plot ourselves.

Here, we've created a summary data frame called mtcars_by_cyl which contains the average (mean_wt), standard deviations (sd_wt) and count (n_wt) of car weights, for each cylinder group, cyl. It also contains the proportion (prop) of each cylinder represented in the entire dataset. Use the console to familiarize yourself with the mtcars_by_cyl data frame.

Deze oefening maakt deel uit van de cursus

Intermediate Data Visualization with ggplot2

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Using mtcars_cyl, plot mean_wt vs. cyl
___ +
  # Add a bar layer with identity stat, filled skyblue
  ___
Code bewerken en uitvoeren