Aan de slagGa gratis aan de slag

Model parameters vs. hyperparameters

In order to perform hyperparameter tuning, it is important to really understand what hyperparameters are (and what they are not). So let's look at model parameters versus hyperparameters in detail.

Note: The Breast Cancer Wisconsin (Diagnostic) dataset has been loaded as breast_cancer_data for you.

Deze oefening maakt deel uit van de cursus

Hyperparameter Tuning in R

Cursus bekijken

Oefeninstructies

  • Use this dataset to fit a linear model with concavity_mean as response and symmetry_mean as predictor variable.
  • Look at the summary() of this linear model.
  • Extract the coefficients.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Fit a linear model on the breast_cancer_data.
linear_model <- ___(___)

# Look at the summary of the linear_model.
___

# Extract the coefficients.
___
Code bewerken en uitvoeren