Aan de slagGa gratis aan de slag

Setting hyperparameters

And finally, you are going to set specific hyperparameters, which you might have found by examining your tuning results from before, The knowledge_train_data dataset has already been loaded for you, as have the packages mlr and tidyverse. And the following code has also been run:

task <- makeClassifTask(data = knowledge_train_data, 
                        target = "UNS")

lrn <- makeLearner(cl = "classif.nnet", fix.factors.prediction = TRUE)

Deze oefening maakt deel uit van de cursus

Hyperparameter Tuning in R

Cursus bekijken

Oefeninstructies

  • Set the following hyperparameters for a neural net: One hidden layer, maximum number of iterations of 150 and 0 decay.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Set hyperparameters
lrn_best <- setHyperPars(lrn, par.vals = list(___ = 1, 
                                              ___ = 150, 
                                              ___ = 0))

# Train model
model_best <- train(lrn_best, task)
Code bewerken en uitvoeren