Aan de slagGa gratis aan de slag

Perform hyperparameter tuning with mlr

Now, you can combine the prepared functions and objects from the previous exercise to actually perform hyperparameter tuning with random search. The knowledge_train_data dataset has already been loaded for you, as have the packages mlr, tidyverse and tictoc. And the following code has also been run already:

# Define task
task <- makeClassifTask(data = knowledge_train_data, 
                        target = "UNS")

# Define learner
lrn <- makeLearner("classif.nnet", predict.type = "prob", fix.factors.prediction = TRUE)

# Define set of parameters
param_set <- makeParamSet(
  makeDiscreteParam("size", values = c(2,3,5)),
  makeNumericParam("decay", lower = 0.0001, upper = 0.1)
)

Deze oefening maakt deel uit van de cursus

Hyperparameter Tuning in R

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Define a random search tuning method.
ctrl_random <- makeTuneControlRandom(___ = ___)
Code bewerken en uitvoeren