Finding the missing values
While having a summary of how much of your data is missing can be useful, often you will need to find the exact locations of these missing values.
Using the same subset of the StackOverflow data from the last exercise (sub_df), you will show how a value can be flagged as missing.
Deze oefening maakt deel uit van de cursus
Feature Engineering for Machine Learning in Python
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Print the top 10 entries of the DataFrame
print(sub_df.____)