Method chaining
When applying multiple operations on the same column (like in the previous exercises), you made the changes in several steps, assigning the results back in each step. However, when applying multiple successive operations on the same column, you can "chain" these operations together for clarity and ease of management. This can be achieved by calling multiple methods sequentially:
# Method chaining
df['column'] = df['column'].method1().method2().method3()
# Same as
df['column'] = df['column'].method1()
df['column'] = df['column'].method2()
df['column'] = df['column'].method3()
In this exercise you will repeat the steps you performed in the last two exercises, but do so using method chaining.
Deze oefening maakt deel uit van de cursus
Feature Engineering for Machine Learning in Python
Oefeninstructies
- Remove the commas (
,) from theRawSalarycolumn ofso_survey_df. - Remove the dollar (
$) signs from theRawSalarycolumn. - Remove the pound (
£) signs from theRawSalarycolumn. - Convert the
RawSalarycolumn to float.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Use method chaining
so_survey_df['RawSalary'] = so_survey_df['RawSalary']\
.____\
.____\
.____\
.____
# Print the RawSalary column
print(so_survey_df['RawSalary'])