Aan de slagGa gratis aan de slag

Creating binary masks

Images for segmentation tasks are typically annotated with pixel-level masks. Consider this image of an Egyptian Mau cat.

cat image

In this and the next exercise, you will use the corresponding mask to segment the cat out of the image. First, you will need to load the mask and binarize it.

Image from PIL, transforms from torchvision, and torch have already been imported for you.

Deze oefening maakt deel uit van de cursus

Deep Learning for Images with PyTorch

Cursus bekijken

Oefeninstructies

  • Load the mask image stored in annotations/Egyptian_Mau_123.png and assign it to mask.
  • Create a binary_mask from mask_tensor where each pixel equal to 1/255 is assigned a tensor value of 1.0, and the remaining pixels are assigned a tensor value of 0.0.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Load mask image
mask = ____

# Transform mask to tensor
transform = transforms.Compose([transforms.ToTensor()])
mask_tensor = transform(mask)

# Create binary mask
binary_mask = ____(
    ____, 
    ____,
    ____,
)

# Print unique mask values
print(binary_mask.unique())
Code bewerken en uitvoeren