Creating a sequential block
You decided to redesign your binary CNN model template by creating a block of convolutional layers. This will help you stack multiple layers sequentially. With this improved model, you will be able to easily design various CNN architectures.
torch and torch.nn as nn have been imported.
Deze oefening maakt deel uit van de cursus
Deep Learning for Images with PyTorch
Oefeninstructies
- In the
__init__()method, define a block of convolutional layers and assign it toself.conv_block. - In the
forward()pass, pass the inputs through the convolutional block you defined.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
class BinaryImageClassification(nn.Module):
def __init__(self):
super(BinaryImageClassification, self).__init__()
# Create a convolutional block
self.conv_block = ____(
nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
)
def forward(self, x):
# Pass inputs through the convolutional block
x = ____
return x