Aan de slagGa gratis aan de slag

Generalizing into ranges

K-anonymity can be a good privacy model for specific datasets that don't have many dimensions. The two main anonymization techniques used to transform a dataset into a k-anonymous table are generalization and suppression.

In this exercise, you will transform a satisfaction rating dataset to a 3-anonymous table containing possible sensitive attributes like satisfaction_rate and work_hours. Some combinations appear less than three times. Fix that to make the DataFrame 3-anonymous.

The DataFrame is available as employees. A k value of 3 is also available.

Deze oefening maakt deel uit van de cursus

Data Privacy and Anonymization in Python

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Calculate how many unique combinations are for BirthYear and Department
print(employees.groupby(['birth_year','department']).____)
Code bewerken en uitvoeren