Aan de slagGa gratis aan de slag

Anonymization of high-dimensional data

Preserving privacy becomes inefficient due to the curse of dimensionality. The curse of dimensionality refers to a set of problems that arise when working with high-dimensional data. As the number of features or dimensions grows, the amount of data we need to generalize accurately grows exponentially. This is especially the case with k-anonymity: the more columns, the more complex reaching a k-anonymous dataset can be.

How does PCA work concerning the anonymization of datasets and dataset releases?

Deze oefening maakt deel uit van de cursus

Data Privacy and Anonymization in Python

Cursus bekijken

Praktische interactieve oefening

Zet theorie om in actie met een van onze interactieve oefeningen.

Begin met trainen