IniziaInizia gratis

Sentiment analysis on formatted text

In this exercise, you'll calculate the sentiment on the customer channel of call_2.wav (file).

You've split the customer channel and saved it to call_2_channel_2.wav (file).

But from your experience with sentiment analysis, you know it can change sentence to sentence.

To calculate it sentence to sentence, you split the split using NLTK's sent_tokenize() module.

But transcribe_audio() doesn't return sentences. To try sentiment anaylsis with sentences, you've tried a paid API service to get call_2_channel_2_paid_api_text which has sentences.

Questo esercizio fa parte del corso

Spoken Language Processing in Python

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

from nltk.sentiment.vader import SentimentIntensityAnalyzer

# Create SentimentIntensityAnalyzer instance
sid = SentimentIntensityAnalyzer()

# Transcribe customer channel of call 2
call_2_channel_2_text = transcribe_audio(____)

# Display text and sentiment polarity scores
print(call_2_channel_2_text)
print(sid.____(call_2_channel_2_text))
Modifica ed esegui il codice