IniziaInizia gratis

Removing punctuation

Now that you've removed stop words from the feedback text, it's time to handle punctuation. The tokens you obtained in the previous exercise still contain punctuation marks, which are often unnecessary when categorizing feedback.

Your task is to remove punctuation from the list of tokens provided, helping to clean up the data even further.

Questo esercizio fa parte del corso

Natural Language Processing (NLP) in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Clean the filtered_tokens list by removing all punctuation.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

import string

filtered_tokens = ['reached', 'support', 'got', 'helpful', 'response', 'within', 'minutes', '!', '!', '!', '#', 'impressed']

# Remove punctuation
clean_tokens = [____ for word in filtered_tokens if ____ not in ____.____]

print(clean_tokens)
Modifica ed esegui il codice