Lemmatization
While continuing your analysis of user reviews, you noticed that stemming sometimes produces non-standard words like "fli" from "flying", which can reduce interpretability. To address this, you'll now use lemmatization, which returns actual words and helps improve the clarity and accuracy of your analysis.
WordNetLemmatizer has been imported, stop_words has been defined, and the necessary NLTK resources have been downloaded.
Questo esercizio fa parte del corso
Natural Language Processing (NLP) in Python
Istruzioni dell'esercizio
- Create an instance
lemmatizerof theWordNetLemmatizer()class. - Use the
lemmatizerto lemmatize thelower_tokens.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
clean_tokens = ['flying', 'lot', 'lately', 'flights', 'keep', 'getting', 'delayed', 'honestly', 'traveling', 'work', 'gets', 'exhausting', 'endless', 'delays', 'every', 'travel', 'teaches', 'something', 'new']
# Create lemmatizer
lemmatizer = ____()
# Lemmatize each token
lemmatized_tokens = [____.____(____) for ____ in clean_tokens]
print(lemmatized_tokens)