IniziaInizia gratis

Lemmatization

While continuing your analysis of user reviews, you noticed that stemming sometimes produces non-standard words like "fli" from "flying", which can reduce interpretability. To address this, you'll now use lemmatization, which returns actual words and helps improve the clarity and accuracy of your analysis.

WordNetLemmatizer has been imported, stop_words has been defined, and the necessary NLTK resources have been downloaded.

Questo esercizio fa parte del corso

Natural Language Processing (NLP) in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Create an instance lemmatizer of the WordNetLemmatizer() class.
  • Use the lemmatizer to lemmatize the lower_tokens.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

clean_tokens = ['flying', 'lot', 'lately', 'flights', 'keep', 'getting', 'delayed', 'honestly', 'traveling', 'work', 'gets', 'exhausting', 'endless', 'delays', 'every', 'travel', 'teaches', 'something', 'new']

# Create lemmatizer
lemmatizer = ____()

# Lemmatize each token
lemmatized_tokens = [____.____(____) for ____ in clean_tokens]

print(lemmatized_tokens)
Modifica ed esegui il codice