IniziaInizia gratis

Agentic orchestration with LangGraph

Questo esercizio fa parte del corso

Multi-Agent Systems with LangGraph

Visualizza il corso

Istruzioni dell'esercizio

Make sure to first run the cell to install the libraries

  • Construct a State class to create a message history where new messages are appended to it, and use it to create a graph state.
  • Define a gpt-4o-mini LLM using the ChatOpenAI class, and a function called llm_node() to invoke it on state messages and store the result.
  • Construct and compile a graph that routes the input into an LLM node, which calls llm_node, and returns the result.
  • Run the code provided to visualize the graph and talk to your agent!


Note: If you’re running DataLab in Restricted Mode, this exercise isn’t supported yet. We’re actively working on making it available in the future.


Esercizio pratico interattivo

Passa dalla teoria alla pratica con uno dei nostri esercizi interattivi

Inizia esercizio