Agentic orchestration with LangGraph
Questo esercizio fa parte del corso
Multi-Agent Systems with LangGraph
Istruzioni dell'esercizio
Make sure to first run the cell to install the libraries
- Construct a
Stateclass to create a message history where new messages are appended to it, and use it to create a graph state. - Define a
gpt-4o-miniLLM using theChatOpenAIclass, and a function calledllm_node()to invoke it on state messages and store the result. - Construct and compile a graph that routes the input into an LLM node, which calls
llm_node, and returns the result. - Run the code provided to visualize the graph and talk to your agent!
Note: If you’re running DataLab in Restricted Mode, this exercise isn’t supported yet. We’re actively working on making it available in the future.
Esercizio pratico interattivo
Passa dalla teoria alla pratica con uno dei nostri esercizi interattivi
Inizia esercizio