IniziaInizia gratis

Adjust model complexity

To make good predictions, you need to adjust the complexity of your model. Simple models can only represent simple data structures, while complex models can represent fine-grained data structures.

In this exercise, you are going to create trees of different complexities by altering the hyperparameters of a regression tree.

The training data chocolate_train is pre-loaded in your workspace.

Questo esercizio fa parte del corso

Machine Learning with Tree-Based Models in R

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create a model having only one split
chocolate_model <- ___(___) %>% 
		set_mode("regression") %>%
		set_engine("rpart") %>% 
		fit(final_grade ~ ., data = chocolate_train)

chocolate_model
Modifica ed esegui il codice