IniziaInizia gratis

Define the ensemble

In the following set of exercises, you'll work with the Indian Liver Patient Dataset from the UCI Machine learning repository.

In this exercise, you'll instantiate three classifiers to predict whether a patient suffers from a liver disease using all the features present in the dataset.

The classes LogisticRegression, DecisionTreeClassifier, and KNeighborsClassifier under the alias KNN are available in your workspace.

Questo esercizio fa parte del corso

Machine Learning with Tree-Based Models in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Instantiate a Logistic Regression classifier and assign it to lr.

  • Instantiate a KNN classifier that considers 27 nearest neighbors and assign it to knn.

  • Instantiate a Decision Tree Classifier with the parameter min_samples_leaf set to 0.13 and assign it to dt.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Set seed for reproducibility
SEED=1

# Instantiate lr
lr = ____(random_state=SEED)

# Instantiate knn
knn = ____(n_neighbors=____)

# Instantiate dt
dt = ____(min_samples_leaf=____, random_state=SEED)

# Define the list classifiers
classifiers = [('Logistic Regression', lr), ('K Nearest Neighbours', knn), ('Classification Tree', dt)]
Modifica ed esegui il codice