Regression with SGB
As in the exercises from the previous lesson, you'll be working with the Bike Sharing Demand dataset. In the following set of exercises, you'll solve this bike count regression problem using stochastic gradient boosting.
Questo esercizio fa parte del corso
Machine Learning with Tree-Based Models in Python
Istruzioni dell'esercizio
Instantiate a Stochastic Gradient Boosting Regressor (SGBR) and set:
max_depthto 4 andn_estimatorsto 200,subsampleto 0.9, andmax_featuresto 0.75.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Import GradientBoostingRegressor
from sklearn.ensemble import GradientBoostingRegressor
# Instantiate sgbr
sgbr = ____(max_depth=____,
subsample=____,
max_features=____,
n_estimators=____,
random_state=2)