IniziaInizia gratis

Regression with SGB

As in the exercises from the previous lesson, you'll be working with the Bike Sharing Demand dataset. In the following set of exercises, you'll solve this bike count regression problem using stochastic gradient boosting.

Questo esercizio fa parte del corso

Machine Learning with Tree-Based Models in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Instantiate a Stochastic Gradient Boosting Regressor (SGBR) and set:

    • max_depth to 4 and n_estimators to 200,

    • subsample to 0.9, and

    • max_features to 0.75.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import GradientBoostingRegressor
from sklearn.ensemble import GradientBoostingRegressor

# Instantiate sgbr
sgbr = ____(max_depth=____, 
            subsample=____,
            max_features=____,
            n_estimators=____,
            random_state=2)
Modifica ed esegui il codice