Set the hyperparameter grid of RF
In this exercise, you'll manually set the grid of hyperparameters that will be used to tune rf's hyperparameters and find the optimal regressor. For this purpose, you will be constructing a grid of hyperparameters and tune the number of estimators, the maximum number of features used when splitting each node and the minimum number of samples (or fraction) per leaf.
Questo esercizio fa parte del corso
Machine Learning with Tree-Based Models in Python
Istruzioni dell'esercizio
Define a grid of hyperparameters corresponding to a Python dictionary called
params_rfwith:the key
'n_estimators'set to a list of values 100, 350, 500the key
'max_features'set to a list of values 'log2', 'auto', 'sqrt'the key
'min_samples_leaf'set to a list of values 2, 10, 30
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Define the dictionary 'params_rf'
params_rf = ____