IniziaInizia gratis

Optimizing flights linear regression

Up until now you've been using the default hyper-parameters when building your models. In this exercise you'll use cross validation to choose an optimal (or close to optimal) set of model hyper-parameters.

The following have already been created:

  • regression — a LinearRegression object
  • pipeline — a pipeline with string indexer, one-hot encoder, vector assembler and linear regression and
  • evaluator — a RegressionEvaluator object.

Questo esercizio fa parte del corso

Machine Learning with PySpark

Visualizza il corso

Istruzioni dell'esercizio

  • Create a parameter grid builder.
  • Add grids for with regression.regParam (values 0.01, 0.1, 1.0, and 10.0) and regression.elasticNetParam (values 0.0, 0.5, and 1.0).
  • Build the grid.
  • Create a cross validator, specifying five folds.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create parameter grid
params = ____()

# Add grids for two parameters
params = params.____(____, ____) \
               .____(____, ____)

# Build the parameter grid
params = params.____()
print('Number of models to be tested: ', len(params))

# Create cross-validator
cv = ____(estimator=____, estimatorParamMaps=____, evaluator=____, ____)
Modifica ed esegui il codice