IniziaInizia gratis

Cleaning up your count

In both left and right joins, there is the opportunity for there to be NA values in the resulting table. Fortunately, the replace_na function can turn those NAs into meaningful values.

In the last exercise, we saw that the n column had NAs after the right_join. Let's use the replace_na column, which takes a list of column names and the values with which NAs should be replaced, to clean up our table.

Questo esercizio fa parte del corso

Joining Data with dplyr

Visualizza il corso

Istruzioni dell'esercizio

  • Use replace_na to replace NAs in the n column with the value 0.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

parts %>%
  count(part_cat_id) %>%
  right_join(part_categories, by = c("part_cat_id" = "id")) %>%
  # Use replace_na to replace missing values in the n column
  ___
Modifica ed esegui il codice