IniziaInizia gratis

Tokenizing text

You want to leverage a pre-trained model from Hugging Face and fine-tune it with data from your company support team to help classify interactions depending on the risk for churn. This will help the team prioritize what to address first, and how to address it, making them more proactive.

Prepare the training and test data for fine-tuning by tokenizing the text.

The data AutoTokenizer and AutoModelForSequenceClassification have been loaded for you.

Questo esercizio fa parte del corso

Introduction to LLMs in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Load the pre-trained model and tokenizer in preparation for fine-tuning.
  • Tokenize both the train_data["interaction"] and test_data["interaction"], enabling padding and sequence truncation.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Load the model and tokenizer
model = ____.____("distilbert-base-uncased")
tokenizer = ____.____("distilbert-base-uncased")

# Tokenize the data
tokenized_training_data = ____(train_data["interaction"], return_tensors="pt", ____, ____, max_length=20)

tokenized_test_data = ____(test_data["interaction"], return_tensors="pt", ____, ____, max_length=20)

print(tokenized_training_data)
Modifica ed esegui il codice