Evaluating perplexity
Try your had at generating text and evaluating the perplexity score.
You've been provided some input_text that is the start of a sentence: "Current trends show that by 2030 ".
Use an LLM to generate the rest of the sentence.
An AutoModelForCausalLM model and its tokenizer have been loaded for you as model and tokenizer variables.
Questo esercizio fa parte del corso
Introduction to LLMs in Python
Istruzioni dell'esercizio
- Encode the
input_textand pass it to the provided text generation model. - Load and compute the
mean_perplexityscore on the generated text.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Encode the input text, generate and decode it
input_text_ids = ____(input_text, return_tensors="pt")
output = ____(input_text_ids, max_length=20)
generated_text = ____(output[0], skip_special_tokens=True)
print("Generated Text: ", generated_text)
# Load and compute the perplexity score
perplexity = ____("perplexity", module_type="metric")
results = ____(model_id="gpt2", predictions=____)
print("Perplexity: ", results['mean_perplexity'])