IniziaInizia gratis

Adding age with timegap

The basetable of previous exercise is given. The timeline is given below, there is a timegap of one month. In this exercise, you will learn how to add the age of the donors to the basetable, compliant with the timeline.

Questo esercizio fa parte del corso

Intermediate Predictive Analytics in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Fill out the reference date on which the age should be calculated, this is the start date of the timegap.
  • Add a column "age" to the basetable that is the age of the donor on the reference date. The function calculate_age has been implemented for you. It takes date_of_birth and reference_date as arguments.
  • Print the mean age of all donors.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Reference date
reference_date = datetime.date(____, ____, ____)

# Add age to the basetable
basetable["age"] = (pd.Series([calculate_age(____, ____)
                              for date_of_birth in basetable["date_of_birth"]]))

# Calculate mean age
print(round(basetable["____"].____()))
Modifica ed esegui il codice