IniziaInizia gratis

Extracting a kernel from a trained network

One way to interpret models is to examine the properties of the kernels in the convolutional layers. In this exercise, you will extract one of the kernels from a convolutional neural network with weights that you saved in a hdf5 file.

Questo esercizio fa parte del corso

Image Modeling with Keras

Visualizza il corso

Istruzioni dell'esercizio

  • Load the weights into the model from the file weights.hdf5.
  • Get the first convolutional layer in the model from the layers attribute.
  • Use the .get_weights() method to extract the weights from this layer.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Load the weights into the model
model.____('weights.hdf5')

# Get the first convolutional layer from the model
c1 = model.____[0]

# Get the weights of the first convolutional layer
weights1 = c1.____()

# Pull out the first channel of the first kernel in the first layer
kernel = weights1[0][...,0, 0]
print(kernel)
Modifica ed esegui il codice