IniziaInizia gratis

LDA model

Now it's time to build the LDA model. Using the dictionary and corpus, you are ready to discover which topics are present in the Enron emails. With a quick print of words assigned to the topics, you can do a first exploration about whether there are any obvious topics that jump out. Be mindful that the topic model is heavy to calculate so it will take a while to run. Let's give it a try!

Questo esercizio fa parte del corso

Fraud Detection in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Build the LDA model from gensim models, by inserting the corpus and dictionary.
  • Save the 5 topics by running print topics on the model results, and select the top 5 words.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Define the LDA model
ldamodel = gensim.models.____.____(____, num_topics=5, id2word=____, passes=5)

# Save the topics and top 5 words
topics = ____.____(num_words=____)

# Print the results
for topic in topics:
    print(topic)
Modifica ed esegui il codice