IniziaInizia gratis

Model results using GridSearchCV

You discovered that the best parameters for your model are that the split criterion should be set to 'gini', the number of estimators (trees) should be 30, the maximum depth of the model should be 8 and the maximum features should be set to "log2".

Let's give this a try and see how well our model performs. You can use the get_model_results() function again to save time.

Questo esercizio fa parte del corso

Fraud Detection in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Input the optimal settings into the model definition.
  • Fit the model, obtain predictions and get the performance parameters with get_model_results().

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Input the optimal parameters in the model
model = RandomForestClassifier(class_weight={0:1,1:12}, ____='____',
            ____=____, ____='log2',  min_samples_leaf=10, ____=____, n_jobs=-1, random_state=5)

# Get results from your model
get_model_results(____, ____, ____, ____, ____)
Modifica ed esegui il codice