Interpreting regressors locally
You are provided with a KNN regressor model that predicts health insurance costs based on features such as age, sex, BMI, number of children, and smoking status. Your task is to assess how each feature affects the prediction for a given sample.
The KNN model and the necessary packages are pre-loaded for you.
Questo esercizio fa parte del corso
Explainable AI in Python
Istruzioni dell'esercizio
- Create a LIME
explainerfor the KNN regressormodel. - Generate an
explanationfor the model's prediction on the providedsample_data_point. - Display the influence of each feature on the prediction.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
from lime.lime_tabular import LimeTabularExplainer
sample_data_point = X.iloc[2, :]
# Create the explainer
explainer = ____
# Generate the explanation
exp = ____
# Display the explanation
exp.____
plt.show()