IniziaInizia gratis

Computing feature importance with decision trees

You built a decision tree classifier to identify patients at risk of heart disease using the heart disease dataset. Now you need to explain the model by analyzing feature importance to determine the key factors for predicting heart disease, enabling more targeted healthcare interventions.

matplotlib.pyplot has been imported as plt. X_train and y_train are pre-loaded for you.

Questo esercizio fa parte del corso

Explainable AI in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Extract the feature importances from the model.
  • Plot the feature_importances for the given feature_names.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

model = DecisionTreeClassifier(random_state=42)
model.fit(X_train, y_train)

# Derive feature importances
feature_importances = ____
feature_names = X_train.columns

# Plot the feature importances
____
plt.show()
Modifica ed esegui il codice