SHAP for explaining income levels
Practice using SHAP to analyze and visualize how each feature influences a trained model's predictions on a single sample from the income dataset, using a waterfall plot for deeper insight into feature contributions.
A trained KNN model is loaded for you. The dataset containing features is loaded in X.
Questo esercizio fa parte del corso
Explainable AI in Python
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
import shap
# Create the SHAP explainer
explainer = ____
# Compute SHAP values for the first instance in X
shap_values = ____
print(shap_values)