Adafactor with Accelerator
You've demonstrated a proof-of-concept of Adafactor with Trainer to train your language translation model with reduced memory requirements. Now you'd like to customize your training loop using Accelerator. Build the training loop to use Adafactor!
The compute_optimizer_size() function has been pre-defined. Some training objects have been pre-loaded: model, train_dataloader, and accelerator.
Questo esercizio fa parte del corso
Efficient AI Model Training with PyTorch
Istruzioni dell'esercizio
- Pass the model parameters to
Adafactorwhen defining theoptimizer. - Pass in the optimizer state to print the size.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Pass the model parameters to Adafactor
optimizer = ____(params=____.____())
model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader)
for batch in train_dataloader:
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
# Pass in the optimizer state
total_size_megabytes, total_num_elements = compute_optimizer_size(____.____.values())
print(f"Number of optimizer parameters: {total_num_elements:,}\nOptimizer size: {total_size_megabytes:.0f} MB")