IniziaInizia gratis

Training loops before and after Accelerator

You want to modify a PyTorch training loop to use Accelerator for your language model to simplify translations using the MPRC dataset of sentence paraphrases. Update the training loop to prepare your model for distributed training.

Some data has been pre-loaded:

  • accelerator is an instance of Accelerator
  • train_dataloader, optimizer, model, and lr_scheduler have been defined and prepared with Accelerator

Questo esercizio fa parte del corso

Efficient AI Model Training with PyTorch

Visualizza il corso

Istruzioni dell'esercizio

  • Update the .to(device) lines so that Accelerator handles device placement.
  • Modify the gradient computation to use Accelerator.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

for batch in train_dataloader:
    optimizer.zero_grad()
    inputs, targets = batch["input_ids"], batch["labels"]
    # Update the lines so Accelerator handles device placement
    inputs = inputs.to(device)
    targets = targets.to(device)
    outputs = model(inputs, labels=targets)
    loss = outputs.loss
    # Modify the gradient computation to use Accelerator
    ____.backward(____)
    optimizer.step()
    lr_scheduler.step()
Modifica ed esegui il codice