Setting the model in evaluation mode
You're ready to set your language model in evaluation mode. If the model is not in evaluation mode during inference, layers like batch normalization and dropout will introduce changes in the behavior of the model, leading to inconsistent translation quality. Build the loop to evaluate the model!
Some data have been preloaded: model, eval_dataloader, accelerator, and metric.
Questo esercizio fa parte del corso
Efficient AI Model Training with PyTorch
Istruzioni dell'esercizio
- Set the model in evaluation mode before looping through batches in the dataset.
- Aggregate
predictionsandlabelsacross devices to compute evaluation metrics with Accelerator's.gather_for_metrics()method. - Compute the evaluation metric at the end.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
metric = evaluate.load("glue", "mrpc")
# Set the model in evaluation mode
____.____()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
# Aggregate values across devices
predictions, references = ____.____((predictions, batch["labels"]))
metric.add_batch(predictions=predictions, references=references)
# Compute the evaluation metric
eval_metric = metric.____()
print(eval_metric)