IniziaInizia gratis

Create a Pydantic model for ML input

You're developing a FastAPI application to deploy a machine learning model that predicts the quality score of coffee based on attributes including aroma, flavor, and altitude.

The first step is to create a Pydantic model to validate the input request data for your ML model and ensure that only valid data flows through the model for successful model prediction.

Questo esercizio fa parte del corso

Deploying AI into Production with FastAPI

Visualizza il corso

Istruzioni dell'esercizio

  • Import the base validation class from Pydantic to create a data model.
  • Define a class named CoffeeQualityInput that inherits from the Pydantic base class.
  • Add three attributes to the class: aroma (float), flavor (float), and altitude (int).

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import the base class from pydantic
from pydantic import ____ 

class CoffeeQualityInput(____):
    # Use apt data type for each attribute of coffee quality
    aroma: ____  
    flavor: ____  
    altitude: ____  
Modifica ed esegui il codice