Sharing model parameters with monitoring
You would like to add a health check endpoint that provides model parameters to your penguin classification API.
The required packages (FastAPI and joblib) have been already imported.
Questo esercizio fa parte del corso
Deploying AI into Production with FastAPI
Istruzioni dell'esercizio
- Add a GET endpoint at the typical location for health checks.
- Capture the model parameters from the sklearn model using the
get_paramsmethod. - Include the model parameters in the response as the value to key
params.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
model = joblib.load(
'penguin_classifier.pkl'
)
app = FastAPI()
# Create health check endpoint
@app.get("____")
async def get_health():
# Capture the model params
params = ____.get_params()
return {"status": "OK",
# Include model params in response
"params": ____}