IniziaInizia gratis

Sharing model parameters with monitoring

You would like to add a health check endpoint that provides model parameters to your penguin classification API.

The required packages (FastAPI and joblib) have been already imported.

Questo esercizio fa parte del corso

Deploying AI into Production with FastAPI

Visualizza il corso

Istruzioni dell'esercizio

  • Add a GET endpoint at the typical location for health checks.
  • Capture the model parameters from the sklearn model using the get_params method.
  • Include the model parameters in the response as the value to key params.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

model = joblib.load(
    'penguin_classifier.pkl'
)
app = FastAPI()

# Create health check endpoint
@app.get("____")
async def get_health():
    # Capture the model params
    params = ____.get_params()
    return {"status": "OK",
            # Include model params in response
            "params": ____}
Modifica ed esegui il codice